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Abstract

An unsupported plate containing an embedded grind-out cavity repaired with a reinforcement bonded on one side

may experience a considerable out-of-plane bending near a cavity due to the load-path eccentricity even when the

geometrically nonlinear effect is taken into account. This out-of-plane bending causes stresses in the plate near the

bottom of the cavity vary significantly through a remaining plate�s thickness with inner wall fiber stresses in some cases

at 20–30% higher than the corresponding plane-stress type results, i.e., those without considering the out-of-plane

deflections. A plane-stress type analysis of a repair over a corrosion cavity had been presented in a previous paper by

Duong et al. [Theoretical and Applied Fracture Mechanics 36 (2001a) 187] for a constant depth cavity repaired with an

elliptical patch and most recently by Duong and Yu [International Journal of Engineering Science 40 (2002a) 347] for a

spherical depth cavity repaired with a polygonal patch. Extension of these methods to include the effect of out-of-plane

bending therefore will be delineated in the present paper.

� 2003 Published by Elsevier Ltd.
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1. Introduction

Corrosion damage on the outer surfaces of aircraft is generally removed by grinding during periodic,

routine maintenance. Aircraft manufacturers provide maintenance specifications that allow a limited

amount of material removal, but it is sometimes necessary to exceed these limits in order to completely

remove the corrosion. In these cases, the structure must be replaced or repaired before further operation of

the aircraft is permitted. Whenever a repair is sought, bonded composite doublers may be preferred due to

high stiffness and high strength of the composite.

In the past, stress analysis of a bonded repair over a corrosion grind-out cavity was normally done using

the finite element method. The corrosion repairs are thought to be too complex to be analyzed by an
analytical method. However, the authors in the recent papers presented a two-stage analysis procedure for
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analyzing this repair problem analytically (Duong et al., 2001a; Duong and Yu, 2002a). This procedure

followed Rose�s original approach (1988) for the analysis of crack patching and it accounted for various

complexities such as polygon-shaped patch, a grind-out cavity with a spherical depth, and the effects of

thermal stresses due to curing and/or cruising. The procedure had been used successfully in estimating
stresses and strains in a patch and skin at various critical locations such as near the patch edge, around a

grind-out, and at a bottom of a grind-out cavity. However, all previous analytical analyses had been limited

to a case of plane stress.

Although a symmetrical repair is the most effective reinforcement, unsymmetrical repairs provide a clear

advantage when it is difficult or not possible to access both sides of a structure. In this case, unless the

structure is well supported against the out-of-plane deflection, for example by stiffeners attached to one side

of the structure, the out-of-plane bending due to the load path eccentricity causes stresses in the repaired

skin near the bottom of the grind-out cavity vary significantly through a remaining skin�s thickness with
inner wall fiber stresses in some cases at 20–30% higher than the corresponding plane-stress type results

(i.e., those without considering the out-of-plane deflections). This necessitates an analysis of out-of-plane

bending in an unsupported bonded corrosion repair.

In this paper, an approximate analytical method based on a hybrid global–local approach is introduced

to solve for a large deflection problem of a bonded plate with an embedded cavity under thermo-mechanical

loading. For simplicity, the bonded plate is assumed to be under a uniform temperature change and the

patch is rigidly bonded to the plate whenever it is in direct contact with the plate. This rigid bond as-

sumption ignores the finite width of the load transfer zone around the boundary of the reinforcement,
which is valid when the actual width of the load transfer zone is small relative to the in-plane dimensions of

the reinforcement. Since analytical solutions for polygon-shaped inclusions with uniform and quadratic

eigenstrains (Rodin, 1996; Duong et al., 2001b) and with uniform eigencurvature (Duong and Yu, 2002b)

are available, it is more convenient to solve the present bonded plate problem using the equivalent inclusion

method (Beom and Earmme, 1999; Mura, 1987).
2. Problem statements and analytical approach

Consider an infinite isotropic plate containing an embedded spherical depth grind-out cavity of an el-
liptical shape and repaired with a polygon-shaped reinforcement X (see Fig. 1). Both reinforcement and

cavity assume to be symmetric with respect to the global coordinate axes. The reinforcement is either

isotropic or orthotropic with its material principal axes parallel to x1 and x2 axes. Let us further assume that

the reinforcement when it is orthotropic will have a larger mismatch in the thermal expansion coefficient

with the base plate along the x2-direction. The bonded plate is subjected to a uniform temperature change

DT and also uniform strains or stresses at infinity. When uniform stresses are prescribed at infinity, one can

simply convert them to strains using Hook�s law. For simplicity, all shear components are assumed to be

zero. The objective here is to obtain the inner wall fiber stresses at the bottom of a grind-out cavity after
patching. It is rather unwieldy to solve the stated problem using a rigorous geometrically nonlinear

analysis. We will therefore present here an approximate solution based on a hybrid global–local approach

as that employed by Wang and Rose (1999) for crack patching. This approach is proposed in details below

and results obtained from the proposed approach will be compared with 3-D FE solutions.

The problem stated above will be solved in three steps, each with a different set of assumptions and

simplifications as follows (see Fig. 2):

Step 1––Global analysis: In the global analysis, by ignoring the grind-out cavity embedded in the infinite

isotropic plate and considering the large deflection, the global strains and curvatures at the prospective
damage location can be determined. These strains and curvatures will be later used as far field boundary
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Fig. 1. Geometry of a composite bonded repair over a grind-out cavity.
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conditions for a local analysis where the effect of the grind-out cavity is accounted for (Duong et al., 2001a;
Duong and Yu, 2002a).

The local analysis of the grind-out problem will be carried out using a similar approach by Hart-Smith

(2002) for computing peel and shear stresses in the adhesive of the single sided patched plate. That ap-

proach will be explained as follows. By expressing the transverse displacements of the plate and patch as
wp ¼ 1
2
ðwp þ wRÞ þ 1

2
ðwp � wRÞ

wR ¼ 1
2
ðwp þ wRÞ � 1

2
ðwp � wRÞ

ð1Þ
where the subscripts �p� and �R� denote the plate and reinforcement (patch), respectively, Hart-Smith (2002)

assumed that these transverse displacements could be obtained by adding the results from two separated
analyses. In the first analysis, the average transverse displacement of the patch–plate combination is
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determined approximately from the rigid bond analysis. The transverse displacement in the plate in that

case will be also that of the patch–plate combination because of the rigid bond assumption and it represents

only one part of the total transverse displacement of the plate. On the hand, to account for the relative

displacement between the plate and patch due to the existence of a thin adhesive layer between them, a
second analysis is performed to determine the relative displacement ðwp � wRÞ with results from the former

analysis imposed as boundary conditions. By denoting wI as the transverse displacement of the patch–plate

combination obtained from the Hart-Smith first analysis, the final transverse displacement of the plate is

given by
wp ¼ wI þ 1
2
ðwp � wRÞ ð2Þ
From the above equation, it is worthy to note that the transverse displacement of the plate obtained from

the Hart-Smith first analysis contributes 100% of its value to the final displacement of the plate while the

relative displacement ðwp � wRÞ obtained from the second analysis has only half of its value contributed to
the final displacement. In a similar manner, the bending stresses at the bottom of the grind-out cavity will

also be determined from two separated analyses corresponding to steps 2 and 3 below.

Step 2: In step 2, the patch is assumed to be infinite, isotropic, and an integral part of the isotropic plate

and the plate contains an elliptical grind-out cavity. Step 2 then involves solving a problem of an infinite

patched plate containing an embedded elliptical grind-out cavity under far field strains and curvatures

obtained from step 1. This step will be performed within the framework of geometrically linear elasticity.

The main objectives of step 2 analysis are (i) to determine the outer wall fiber stress, thus the bending stress,

at the bottom of the grind out cavity (after patching), associated with the unison deflection of the patch–
plate combination, and (ii) to derive the local strains and curvatures near the edges of the grind-out cavity

for use in step 3 below, assuming that these strains and curvature are only different from the global strains

and curvatures by small perturbations. Step 2 analysis will provide the bending stress at the bottom of the

grind-out cavity in the average sense in the same spirit as the Hart-Smith first analysis of the single sided

patched plate for wI. Since the wall of the cavity tends to deflect toward the patch, the outer wall fiber stress

at the bottom of the cavity will be lower than the corresponding plane stress result (the one without

considering the out-of-plane deflection). The average bending stress at the bottom of the cavity will be

estimated from this step as
rbðstep 2Þ
0 � rpðplane-stressÞ

22 ð0Þ � rpðstep 2Þ
22ðouter-wallÞð0Þ ð3Þ
where the center of the cavity is located at point 0. It should be emphasized that the corresponding plane

stress solution rpðplane-stressÞ
22 ð0Þ is available and given earlier by Duong and Yu (2002a). For a cavity either

filled with a typical adhesive or unfilled, the patch and the base plate deform differently inside the grind-out

region. Thus, the result of the maximum through thickness stress, i.e., the inner wall fiber stress, at the

bottom of the cavity obtained from step 2 will not be sufficiently accurate for the repair assessment. In the

same spirit as the Hart-Smith second analysis of the single sided patched plate, a step 3 analysis is therefore

required for the present corrosion repair problem to account for the fact that the deflections of the patch
and plate are relatively independent inside the cavity. Since practically no load transfer will take place

between the plate and the patch inside the cavity, stresses in the plate at the bottom of the grind-out cavity

will be governed solely by the plate�s stresses at the edge of the grind-out. In other words, if the plate�s
stresses at the edges of the grind-out are known, the plate�s stresses at the bottom of the cavity can be

determined from these edge�s stresses from another separate analysis without considering the patch. This

explains why the patch is not modeled in step 3 below.

Step 3: In step 3, an un-patched plate with an embedded grind-out cavity is considered, with the strains

and curvatures obtained from step 2 at the edges of the grind-out applied at infinity. The analysis is again
performed within the framework of geometrically linear elasticity. The objective of step 3 is to determine
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the bending stress at the bottom of the cavity when the plate and patch deflect quite independently inside

the cavity. This bending stress is defined as 1
2
ðrpðstep 3Þ

22ðinner-wallÞð0Þ � rpðstep 3Þ
22ðouter-wallÞð0ÞÞ. Since the plate�s strains and

curvatures obtained from step 2 at the edge of the grind-out cavity are imposed in the present un-patched

plate problem at infinity, the average-thickness stress (or mean stress) at the bottom of the cavity of the
problem considered in this step may be different from those of the originally sought problem. The bending

stress obtained from this step therefore will also be scaled with respect to the corresponding plane stress

result according to the following:
rbðstep 3Þ
0 ¼

rpðstep 3Þ
22ðinner-wallÞð0Þ � rpðstep 3Þ

22ðouter-wallÞð0Þ
� �
rpðstep 3Þ
22ðinner-wallÞð0Þ þ rpðstep 3Þ

22ðouter-wallÞð0Þ
� � rpðplane-stressÞ

22 ð0Þ ð4Þ
In light of Eq. (2), the total bending stress at the bottom of the cavity finally can be expressed as
rb
0 ¼ rbðstep 2Þ

0 þ 1
2
rbðstep 3Þ
0 ð5Þ
where rbðstep 3Þ
0 and rbðstep 3Þ

0 are previously defined via Eqs. (3) and (4). The maximum stress at the bottom of

the grind-out cavity will be at the inner wall, which is given by
rmax
22 ð0Þ ¼ rpðplane-stressÞ

22 ð0Þ þ rb
0 ¼ rpðplane-stressÞ

22 ð0Þ þ rbðstep 2Þ
0 þ 1

2
rbðstep 3Þ
0 ð6Þ
It remains now to outline a solution method for each step of the above procedure and that will be the

topic of the next section.
3. Solution method

Solution methods for the above three steps will be delineated here. The solution method for step 1 was

given in an earlier paper by the authors in Duong and Yu (2002c). The description of the solution method

for step 1 therefore will be omitted from this paper. Nevertheless, to better understand the present hybrid
local–global approach, key results presented in the cited reference will be discussed here and the reader

should refer to that reference for further details. It was shown in Duong and Yu (2002c) that the neutral

plane of the reinforced region tended to align exactly with the load line for the remote tensile load, thus

reducing the bending moment in the middle of the reinforced plate or at the prospective damage location.

For a combination of relatively high patch�s length to the plate�s thickness ratio and a relatively high remote

tensile load, this alignment is closed to perfect, resulting in little or no bending moment in the middle of the

reinforced plate. In that case, step 1 can be solved approximately under plane stress assumption. Another

significant result found in the cited reference is that the alignment of the neutral plane with the load line for
the tensile load occurs at a lower load level when the thermal loads are present, providing that a same patch

configuration has been considered in both loading cases with and without thermal effects. Since most of the

corrosion repairs are evaluated at a relatively high tensile load corresponding to either the design limit load

(DLL) or the design ultimate load (DUL) and with thermal effects, the bending moments at the prospective

damage location in these repairs in many cases are practically zero. In those cases, a plane stress analysis

will be sufficient for step 1 and such plane stress solution is available in Duong et al. (2001b).

We now devote our effort to outline the solution methods for steps 2 and 3 of the hybrid local–global

approach. The solution method for step 2 will be delineated first in Section 3.1.
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3.1. Solution method for step 2 analysis

3.1.1. Formulation

For clarity, a description of the problem analyzed in step 2 will be repeated here in details. Let us
consider an infinite bi-material (fully patched) isotropic plate containing an embedded elliptical grind-out

cavity over domain R as illustrated in Fig. 2(b). The reader is reminded that the patch in step 2�s analysis
assumes to be infinite and isotropic. The extensional, coupling and bending stiffness A0

ijkl, B
0
ijkl, D

0
ijkl of the bi-

material plate are defined according to a classical laminate theory as (Jones, 1975):
Fig. 3.

the ell
A0
ijkl ¼

Z tp

0
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ijkl dzþ

Z tpþtR

tp

CR
ijkl dz

B0
ijkl ¼

Z tp

0

Cp
ijklðz� h0Þdzþ

Z tpþtR

tp

CR
ijklðz� h0Þdz

D0
ijkl ¼

Z tp

0

Cp
ijklðz� h0Þ2 dzþ

Z tpþtR

tp

CR
ijklðz� h0Þ2 dz

ð7Þ
where h0 is the z-coordinate of the neutral plane measured from the lower surface of the bi-material plate

and it can be found from a condition B0
22 ¼ 0; Cijkl is the elasticity tensor; t is the thickness; the superscripts

or subscripts �p�, �R�, �0� denote the repaired plate, the reinforcement, and the bi-material plate, respectively.

CR
ijkl is calculated based on the assumption that the patch is isotropic with a modulus and Poisson ratio

equal to the principal modulus E22 and m12, respectively.
Follow the work of Duong and Yu (2002a), the thickness profile of a base (repaired) plate inside the

cavity region R is approximated by
tp-insideðx1; x2Þ ¼ tr þ
1

2Rc

x21

�
þ x22

b2

�
ð8Þ
where tr is the minimum remaining plate thickness inside R, b is an aspect ratio of the elliptical cavity, and

Rc is a geometric parameter defined in Fig. 3. It should be noted that for a circular grind-out cavity ðb ¼ 1Þ,
Eq. (8) implies that the plate thickness profile in the cavity is axisymmetric. For simplicity, the patch and

the plate inside region R assume to deform as if they are connected by a series of rigid shear springs and

rigid extensional springs with the axial direction of the extensional spring parallel to a normal vector of the

repaired plate. Any deficiency resulting from this rather restricted assumption is remedied by using the
Detailed geometry of a cross section of a plate containing a spherical deep grind-out cavity. In the figure, ‘‘a’’ is minor axis of

iptical grind-out as shown in Fig. 1.
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approach outlined in Section 2. The region R thus can be treated as an inhomgeneity of a bi-material plate

with extensional, coupling and bending stiffness tensors given by
AI
ijkl ¼

Z tp-inside

0

Cp
ijkl dzþ

Z tpþtR

tp

CR
ijkl dz

BI
ijkl ¼

Z tp-inside

0

Cp
ijklðz� h0Þdzþ

Z tpþtR

tp

CR
ijklðz� h0Þdz

DI
ijkl ¼

Z tp-inside

0

Cp
ijklðz� h0Þ2 dzþ

Z tpþtR

tp

CR
ijklðz� h0Þ2 dz

ð9Þ
In the above equation, h0 is the z-coordinate of a neutral plane of the bi-material plate (thus of the region

outside R), tp is the full thickness of the repaired plate, and tp-inside is given by Eq. (8). Also, it should be

noted that in Eq. (9) the upper limit of the first integral of the right hand side ðtpÞ is different from the lower

limit of the second integral ðtp-insideÞ since the patch is not in direct contact with the repaired plate in R due
to the presence of the cavity (Fig. 1).

The fully patched plate is subjected to a strain field e1ij and curvature field j1ij at infinity. e1ij and j1ij

are related respectively to the strains and curvatures obtained from step 1 at the middle of the reinforced

plate by
e1ij ¼ eðstep 1Þij

���
plate’s middle

þ h0
�

� tp
2

�
jðstep 1Þ
ij

���
plate’s middle

ð10Þ

j1ij ¼ jðstep 1Þ
ij

���
plate’s middle

ð11Þ
Since the reference plane at which the main plane strains are measured is chosen at z ¼ tp=2 in step 1 while it

is at the neutral plane of the bi-material plate in step 2, such different choice of the reference plane therefore

must be taken into account in the present formulation. That explains the relationship given in Eq. (10). It

should be noted that if step 1 is obtained from a plane stress analysis as mentioned in Section 2, tensor j1ij

is then equal to zero. In addition to the above far field strain and curvature, as derived in Duong and Yu

(2002a), the reinforcement layer of the bi-material plate is prescribed by the following uniform initial strain

field associated with the thermal expansion mismatch between the patch and the plate:
eðTÞðRÞ
ij ¼ DaijDT ð12Þ
where Daij ¼ ðaR
ij � ap

ijÞ, aij is thermal expansion coefficient tensor, and DT is the uniform temperature

change. That initial strain field induces the following thermal force and thermal moment per unit width,

which applied to all regions of the bi-material plate, both inside and outside R (Jones, 1975):
N ðTÞ
ij ¼ tRCR

ijkle
ðTÞðRÞ
kl

M ðTÞ
ij ¼ v1C

R
ijkle

ðTÞðRÞ
kl

ð13Þ
where
v1 ¼
ðtp þ tR � h0Þ2 � ðtp � h0Þ2

2
ð14Þ
Again, if the solution of step 1 is obtained from a plane stress analysis, v1 will be assumed to be zero in this

step for consistency. With the analyzing problem completely stated, we are now ready to outline its solution
method. We begin the development with a brief summary of the constitutive relations for the inhomoge-

neous region R and the surrounding region as given below:
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• For an inhomogeneity R
N I
ij ¼ AI

ijkl �eeIkl

�
þ e1kl

�
þ BI

ijkl jI
kl

�
þ j1kl

�
� N ðTÞ

ij

M I
ij ¼ BI

ijkl �eeIkl

�
þ e1kl

�
þ DI

ijkl jI
kl

�
þ j1kl

�
�M ðTÞ

ij

ð15Þ
• For a region outside R
N 0
ij ¼ A0

ijkl �ee0kl

�
þ e1kl

�
þ B0

ijkl j0
kl

�
þ j1kl

�
� N ðTÞ

ij

M0
ij ¼ B0

ijkl �ee0kl

�
þ e1kl

�
þ D0

ijkl j0
kl

�
þ j1kl

�
�M ðTÞ

ij

ð16Þ
Here Nij and Mij are the stress and moment resultant defined as Nij ¼
R t
0
rij dz and Mij ¼

R t
0
rijðz� h0Þdz. �eeij

and jij are the incremental main plane strain and curvature due the presence of the inhomogeneity and due

to the thermal force and moment. They are defined as �eeij ¼ 1
2
ðui;j þ uj;iÞ and jij ¼ �ðo2w=oxi oxjÞ, where ui

and w are incremental main plane displacements and incremental transverse displacement, respectively.

Next we want to show that the present problem with the prescribed thermal force and moment above can
be formulated as an inhomogeneity problem with its own eigenstrain and eigencurvature. This class of

problem is well studied in micromechanics. It involves an infinite domain of homogeneous material D
containing a finite subdomain R of a different material with inelastic strain (eigenstrain) and inelastic

curvature (eigencurvature) fields prescribed in R and these fields are zero in region D–R.

By defining eðinitÞð0Þij , jðinitÞð0Þ
ij , eðinitÞðIÞij and jðinitÞðIÞ

ij as,
eðinitÞð0Þij

jðinitÞð0Þ
ij

( )
¼ A0

ijkl B0
ijkl

B0
ijkl D0

ijkl

� 
�1
N ðTÞ

kl

M ðTÞ
kl

( )
ð17Þ

eðinitÞðIÞij

jðinitÞðIÞ
ij

( )
¼ AI

ijkl BI
ijkl

BI
ijkl DI

ijkl

� 
�1
N ðTÞ

kl

M ðTÞ
kl

( )
ð18Þ
it is then very easy to show that Eqs. (15) and (16) can be rewritten as
N I
ij ¼ AI

ijkl �eeIkl

h
þ e1kl � eðinitÞð0Þkl � eðinitÞðIÞkl

�
� eðinitÞð0Þkl

�i
þ BI

ijkl jI
kl

h
þ j1kl � jðinitÞð0Þ

kl � jðinitÞðIÞ
kl

�
� jðinitÞð0Þ

kl

�i
M I

ij ¼ BI
ijkl �eeIkl

h
þ e1kl � eðinitÞð0Þkl � eðinitÞðIÞkl

�
� eðinitÞð0Þkl

�i
þ DI

ijkl jI
kl

h
þ j1kl � jðinitÞð0Þ

kl � jðinitÞðIÞ
kl

�
� jðinitÞð0Þ

kl

�i
ð19Þ
for x 2 R, and
N 0
ij ¼ A0

ijkl �ee0kl

�
þ e1kl � eðinitÞð0Þkl

�
þ B0

ijkl j0
kl

�
þ j1kl � jðinitÞð0Þ

kl

�
M0

ij ¼ B0
ijkl �ee0kl

�
þ e1kl � eðinitÞð0Þkl

�
þ D0

ijkl j0
kl

�
þ j1kl � jðinitÞð0Þ

kl

� ð20Þ
for x 2 D–R. From Eqs. (19) and (20), it is clear that eðinitÞðIÞij � eðinitÞð0Þij

� �
and jðinitÞðIÞ

ij � jðinitÞð0Þ
ij

� �
are the

eigenstrain and eigencurvature of the inhomogeneity since they are prescribed in R and vanish in D–R,

thus, what remains now is to solve for the elastic solution of an infinite plate of a homogeneous material

with stiffnesses given by Eq. (7), containing an inhomogeneity R of a different material with stiffnesses given

by Eq. (9), subjected to a uniform strain and curvature field e1ij � eðinitÞð0Þij

� �
and j1ij � jðinitÞð0Þ

ij

� �
at infinity,

and prescribed with an eigenstrain and eigencurvature field eðinitÞðIÞij � eðinitÞð0Þij

� �
and jðinitÞðIÞ

ij � jðinitÞð0Þ
ij

� �
inside R, using the equivalent inclusion method.
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3.1.2. Equivalent inclusion method

In the equivalent inclusion method, the stress, main plane strain and curvature fields induced by an

inhomogeneity occupied region R will be the same as those induced by eigenstrain field e	ij and eigencur-

vature field j	
ij in the same region of a homogeneous material when e	ij and j	

ij are selected appropriately.
The latter homogeneous problem is called an inclusion problem with the constitutive relation given by
NH
ij

MH
ij

� �
¼

A0
ijkl �eeHkl þ e1kl � eðinitÞð0Þkl � e	kl

� �
þ B0

ijkl jH
kl þ j1kl � jðinitÞð0Þ

kl

� �
B0
ijkl �eeHkl þ e1kl � eðinitÞð0Þkl

� �
þ D0

ijkl jH
kl þ j1kl � jðinitÞð0Þ

kl � j	
kl

� �
8<
:

9=
; ð21Þ
for x 2 R, and
NH
ij

MH
ij

� �
¼

A0
ijkl �eeHkl þ e1kl � eðinitÞð0Þkl

� �
þ B0

ijkl jH
kl þ j1kl � jðinitÞð0Þ

kl

� �
B0
ijkl �eeHkl þ e1kl � eðinitÞð0Þkl

� �
þ D0

ijkl jH
kl þ j1kl � jðinitÞð0Þ

kl

� �
8<
:

9=
; ð22Þ
for x 2 D–R. In the above equation, the superscript H denotes the homogeneous problem. For a given e	ij
and j	

ij, solutions of the homogeneous (inclusion) problem exist. For e	ij given as a second ordered poly-

nomial of the position coordinate axes, i.e.,
e	ij ¼ Fij þ Fijklxkxl ð23Þ
it was shown in Duong et al. (2001b) that the elastic solution for the main plane strain field can be expressed

as
�eeHij ¼ SijklFkl þ SijklmnFklmn ð24Þ
where Fij and Fijkl are constant tensors, Sijkl and Sijklmn are called Eshelby tensors. These Eshelby tensors can

be evaluated for any polygon-shaped inclusion using the algorithmic approach outlined in Rodin (1996)
and Duong et al. (2001b). These detailed evaluations will be omitted here for reason of space. Similarly, for

a given constant (or uniform) j	
ij field, the elastic solution for the curvature field is given by
jH
ij ¼ KijklRkl ð25Þ
j	
ij ¼ Rij ð26Þ
where Rij is a constant tensor, Kijkl is a Eshelby-type tensor for curvature transformation. The detailed

evaluation of Kijkl for a polygonal inclusion is presented in Duong and Yu (2002b) and again it will be

omitted here. Sijkl, Sijklmn and Kijkl in general are functions of spatial coordinates for points inside and

outside region R. It should be emphasized that since the main-plane displacements ui and the transverse

displacement w do not depend on the coupling stiffness and are identical for the problem of a symmetric
laminate with the same stiffness A0

ijkl and D0
ijkl (Beom and Earmme, 1999), the elastic solutions for the main

plane strain and curvature field of the homogeneous problem can be obtained independently as suggested

by Eqs. (24) and (25).

The present inhomogeneity problem may appear to be the same as that considered earlier by Beom and

Earmme (1999). However, it is different since the stiffness tensors of the inhomogeneity in the present

problem are not constant in R. This is because the thickness of the repaired plate varies inside R according

to the profile given by Eq. (8). As a result, it may require the use of high ordered polynomials for e	ij and j	
ij

in the analysis. However, to simplify the analysis, the present inhomogeneity problem will be solved using a
quadratic eigenstrain and a constant eigencurvature theory. In addition, the stiffness tensors of the in-

homogeneity given by Eq. (9) will be approximated by
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AI
ijkl ¼ AIðminÞ

ijkl þ tp
2Rc

x21

�
þ x22

b2

�
Cp

ijkl ¼ AIðminÞ
ijkl þ x21

�
þ x22

b2

�
AðprimeÞ
ijkl

AðprimeÞ
ijkl ¼ tp

2Rc

Cp
ijkl

BI
ijkl � BIðminÞ

ijkl

DI
ijkl � DIðminÞ

ijkl ;

ð27Þ
where AIðminÞ
ijkl , BIðminÞ

ijkl and DIðminÞ
ijkl are stiffness tensors of the inhomogeneity when tp-inside in Eq. (9) takes on a

minimum thickness value, i.e., tr.
As found in Duong and Yu (2002a), it is more convenient to use in the formulation a new initial strain

and curvature field eðinitÞðI-minÞ
ij and jðinitÞðI-minÞ

ij defined as
eðinitÞðI-minÞ
ij

jðinitÞðI-minÞ
ij

( )
¼ AIðminÞ

ijkl BIðminÞ
ijkl

BIðminÞ
ijkl DIðminÞ

ijkl

" #�1

N ðTÞ
kl

M ðTÞ
kl

( )
: ð28Þ
From Eqs. (12) and (22), it is clear that eðinitÞðI-minÞ
ij and jðinitÞðI-minÞ

ij are related to eðinitÞðIÞij and jðinitÞðIÞ
ij by
AIðminÞ
ijkl BIðminÞ

ijkl

BIðminÞ
ijkl DIðminÞ

ijkl

" #
eðinitÞðI-minÞ
ij

jðinitÞðI-minÞ
ij

( )
¼ AI

ijkl BI
ijkl

BI
ijkl DI

ijkl

� 

eðinitÞðIÞij

jðinitÞðIÞ
ij

( )
ð29Þ
The use of this relation will greatly simplify the latter derivation.

Following a procedure similar to that given in Duong and Yu (2002a), by approximating e	ij and j	
ij

respectively by Eqs. (23) and (26) with Fij, Fijkl and Rij are yet to be determined coefficients, and by ex-

panding the elastic solutions for the resulting strain and curvature field of a homogeneous problem into a

Taylor series, the equivalency condition requires that Fij, Fijkl and Rij must satisfy the following system of

linear equation (without summation on subscript a):
DAaa11L11ð0Þ þ DAaa22L22ð0Þ þ A0
aa11F11 þ A0

aa22F22 þ DBaa11P11ð0Þ þ DBaa22P22ð0Þ
¼ �DAaa11 e111

�
� eðinitÞð0Þ11

�
� DAaa22 e122

�
� eðinitÞð0Þ22

�
þ AIðminÞ

aa11 eðinitÞðI-minÞ
11

�
� eðinitÞð0Þ11

�
þ AIðminÞ

aa22 eðinitÞðI-minÞ
22

�
� eðinitÞð0Þ22

�
� DBaa11 j111

�
� jðinitÞð0Þ

11

�
� DBaa22 j122

�
� jðinitÞð0Þ

22

�
þ BIðminÞ

aa11 jðinitÞðI-minÞ
11

�
� jðinitÞð0Þ

11

�
þ BIðminÞ

aa22 jðinitÞðI-minÞ
22

�
� jðinitÞð0Þ

22

�
1

2
DAaa11

o2

ox21
L11ð0Þ þ

1

2
DAaa22

o2

ox21
L22ð0Þ þ A0

aa11F1111 þ A0
aa22F2211 þ AðprimeÞ

aa11 L11ð0Þ þ AðprimeÞ
aa22 L22ð0Þ

þ 1

2
DBaa11

o2

ox21
P11ð0Þ þ

1

2
DBaa22

o2

ox21
P22ð0Þ ¼ �AðprimeÞ

aa11 e111 � AðprimeÞ
aa22 e122

1

2
DAaa11

o2

ox22
L11ð0Þ þ

1

2
DAaa22

o2

ox22
L22ð0Þ þ A0

aa11F1122 þ A0
aa22F2222 þ

1

b2
AðprimeÞ

aa11 L11ð0Þ þ
1

b2
AðprimeÞ

aa22 L22ð0Þ

þ 1

2
DBaa11

o2

ox22
P11ð0Þ þ

1

2
DBaa22

o2

ox22
P22ð0Þ ¼ � 1

b2
AðprimeÞ

aa11 e111 �
1

b2
AðprimeÞ

aa22 e122

DBaa11L11ð0Þ þ DBaa22L22ð0Þ þ DDaa11P11ð0Þ þ DDaa22P22ð0Þ þ D0
aa11R11 þ D0

aa22R22

¼ �DBaa11 e111

�
� eðinitÞð0Þ11

�
� DBaa22 e122

�
� eðinitÞð0Þ22

�
� DDaa11 j111

�
� jðinitÞð0Þ

11

�
� DDaa22 j122

�
� jðinitÞð0Þ

22

�
þ BIðminÞ

aa11 eðinitÞðI-minÞ
11

�
� eðinitÞð0Þ11

�
þ BIðminÞ

aa22 eðinitÞðI-minÞ
22

�
� eðinitÞð0Þ22

�
þ DIðminÞ

aa11 jðinitÞðI-minÞ
11

�
� jðinitÞð0Þ

11

�
þ DIðminÞ

aa22 jðinitÞðI-minÞ
22

�
� jðinitÞð0Þ

22

�
ð30Þ
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where
DAijkl ¼ AIðminÞ
ijkl � A0

ijkl

DBijkl ¼ BIðminÞ
ijkl � B0

ijkl

DDijkl ¼ DIðminÞ
ijkl � D0

ijkl

LabðxÞ ¼ Sab11ðxÞF11 þ Sab22ðxÞF22 þ Sab1111ðxÞF1111 þ Sab1122ðxÞF1122 þ Sab2211ðxÞF2211 þ Sab2222ðxÞF2222
PabðxÞ ¼ Kab11ðxÞR11 þ Kab22ðxÞR22 ða; b ¼ 1; 2Þ

ð31Þ
the notation Labð0Þ, etc. means that Labð0Þ being evaluated at point (0, 0), the origin of the coordinate

system. Eq. (30) involves evaluations of the second derivatives of the Eshelby tensors and Eshelby-type
tensors (via ðo2=ox2j ÞLabðxÞ and ðo2=ox2j ÞPabðxÞ) and these computations can be carried out using an algo-

rithm outlined in Duong et al. (2001b). It should be noted that Eq. (30) had been derived by (i) equating Eq.

(21) of the homogeneous problem to Eq. (19) of the inhomogeneous problem with the stiffness tensors of

the inhomogeneity approximated by Eq. (27), (ii) invoking the relation (29), and (iii) imposing conditions

eIij ¼ eHij and jI
ij ¼ jH

ij . In addition, results from Eqs. (24) and (25) for �eeHij and jH
ij had also been utilized in the

derivation with �eeHij and jH
ij each being expanded into a Taylor series and retaining up to a second ordered

term of the series.

It should be emphasized that the only unknowns in Eq. (30) are the coefficients Fij, Fijkl and Rij of the
assumed eigenstrain and eigencurvature field. Once these unknown coefficients are determined by solving

Eq. (30), the main plane strain �eeHij and curvature jH
ij of the homogeneous problem can be calculated via Eqs.

(24) and (25). The corresponding stress and moment resultants NH
ij and MH

ij then can be evaluated using

Eqs. (21) and (22). The stresses in the base plate and in the patch are finally given by
rp
ij ¼ Cp

ijkl eIkl
�

þ e1kl þ ðz� h0Þ jI
kl

�
� j1kl

��
rR
ij ¼ CR

ijkl eIkl

�
þ e1kl � eðTÞðRÞ

kl þ ðz� h0Þ jI
kl

�
� j1kl

�� ð32Þ
where
eIij þ e1ij

jI
ij þ j1ij

( )
¼

AI
ijkl BI

ijkl

BI
ijkl DI

ijkl

" #�1
NH

kl

MH
kl

( )
þ

eðinitÞð0Þij

jðinitÞð0Þ
in

( )
for x 62 R

eIij þ e1ij

jI
ij þ j1ij

( )
¼

AI
ijkl BI

ijkl

BI
ijkl DI

ijkl

" #�1
NH

kl

MH
kl

( )
þ

eðinitÞðIÞij

jðinitÞðIÞ
in

( )
for x 2 R;

ð33Þ
and perhaps only eðTÞðRÞ
ij is needed to be reminded as the initial strain prescribed in the patch associated with

the thermal expansion coefficient mismatch, defined earlier in Eq. (12).

We conclude this section by a following remark. The development presented in Section 3.1 is quite
similar to that given in Duong and Yu (2002a) for a stage II analysis of a plane stress problem. However, it

includes the additional complexity associated with the out-of-plane bending. Moreover, it has been pre-

sented in a slightly different but better context.

3.2. Solution method for step 3 analysis

In step 3, an un-patched plate with an embedded grind-out cavity is considered, with strains and cur-

vatures obtained from step 2 at the edges of the grind-out applied at infinity (see Fig. 2(c)). The analysis in
this step can be carried out in a similar manner as in step 2 with the following minor changes. First, since an
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un-patched plate is considered, the stiffness tensors of the inhomogeneity and the surrounding region will

not include the patch�s contribution. Second, as mentioned in Section 2, uniform strains and curvatures

applied at infinity in the present problem are obtained from step 2 at the edge of the grind-out, not at the

cavity center, and they are given by similar expression as Eqs. 10 and 11. However, since the reference plane
at which the main plane strains are measured is chosen at z ¼ h0 in step 2 but at z ¼ tp=2 in step 3, in

addition to the appropriate changes in the subscripts ‘‘plate�s middle’’ in these two equations, the plus sign

in Eq. (10) also must change to minus sign to account for this different choice of reference plane. Finally,

since only an un-patched plate is considered in this step and the plate itself does not involve any initial

strain (the initial strain field is only prescribed within the patch via Eq. (12)), all N ðTÞ
ij , M ðTÞ

ij , eðinitÞð0Þij , jðinitÞð0Þ
ij ,

eðinitÞðIÞij , jðinitÞðIÞ
ij , eðinitÞðI-minÞ

ij and jðinitÞðI-minÞ
ij must be set to zero in all formula derived in Section 3.1 as they are

applied to the analysis of step 3.

It would be difficult to supply a precise error analysis for the present approximate method: its accuracy is

most readily assessed by comparison with finite element results for particular cases. This is what is depicted

in Section 4.
4. Numerical examples

To illustrate the present method, two examples corresponding to typical repair configurations are

considered in this section. In the first example, an octagonal patch bonded over a circular grind-out cavity
with a spherical depth as shown in Fig. 4 is analyzed. The material properties and thickness of the base

plate and the patch are given below:

Base plate: Aluminum, E ¼ 72:4 GPa, m ¼ 0:33, tp ¼ 5:08 mm, ap ¼ 22:5.E)06/�C.
Patch: Boron/Epoxy, Ex ¼ 18:7 GPa, Ey ¼ 193:6 GPa, myx ¼ 0:21, Gxy ¼ 5:5 GPa, tR ¼ 0:79 mm,

ax ¼ 21:4E)06/�C, ay ¼ 4:3E)06/�C.
The diameter and depth of the grind-out cavity are 25.4 and 2.54 mm (50% grind-out), respectively. Two

different loading conditions are considered in this example. In the first loading condition, a stress
σ∞22 =137.9 MPa
Patch

Uniform ∆T=-1000 C

Grind-out
cavity filled
with adhesive

127 mm

177.8 mm

45 deg

63.5 mm

Fig. 4. Geometry of the example problem.



Table 1

Maximum stress concentration at the bottom of a grind-out cavity for different grind-out depths and different loading conditions

Loading Grind-out depth (mm) Maximum Kt at bottom of grind-out cavity

Analytical FE

137.9 MPa 2.54 1.418 1.529

137.9 MPa and )100 �C 2.54 1.793 1.915

137.9 MPa 4.06 1.954 2.143

137.9 MPa and )100 �C 4.06 2.511 2.350
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r122 ¼ 137:9 MPa is applied to the repaired plate at infinity. To address the effect of thermal stresses, in a
second loading condition, a uniform temperature change of )100 �C is imposed on the repair in addition to

the far field stress. On the other hand, the repair configuration of the second example is identical to the first

example except for a deeper grind-out cavity (80% grind-out) with the plate�s remaining thickness of 1.02

mm. Analytical predictions for the maximum stress concentration at the bottom of the grind-out cavity in

the principal loading direction are summarized in Table 1. In all cases, the maximum stress concentration

occurs at inner wall of the cavity as expected and it is normalized with respect to the far field applied stress

of 137.9 MPa. For each repair configuration and loading condition, analyses corresponding to steps 1–3

were performed. The maximum stress in the plate at the bottom of the cavity were calculated using Eqs.
(3)–(6) with the inner and outer wall fiber stresses computed from steps 2 and 3, and with the corresponding

plane-stress type result (i.e., the one without considering the out-of-plane deflections) available in Duong

and Yu (2002a). The plane stress results for these two problems are repeated in the last column of Table 2

for reference, and they are also compared with the present results there. It is clear from Table 2 that the use

of these plane-stress type results for the prediction of the maximum Kt at the bottom of a cavity after one-

sided patching in an unsupported structure will not be conservative. The present analyses yield a higher Kt

at the bottom of the cavity since the cavity is either assumed to be unfilled or filled with a soft adhesive so

that the cavity wall there tends to deflect toward the patch to align with the line of load, causing a linear
stress distribution across the cavity wall thickness with a maximum value at the inner wall (a side adjacent

to the adhesive). Illustration of this local out-of-plane deflection by the finite element analysis will be

presented in the next paragraph.

To assess the accuracy of the analytical method, results from the 3-D finite element analyses are also

obtained and compared with analytical predictions in Table 1. Finite element analyses are carried out using

NASTRAN (solution 106, a geometrically nonlinear analysis). The adhesive is also modeled in the finite

element analysis and the cavity assumes to be filled with the adhesive as in the actual repair. The shear

modulus the adhesive and the bond line thickness are 0.46 GPa and 0.127 mm, respectively. The base plate,
the adhesive and each ply of the patch are modeled by 8-node hexahedral solid elements. A very fine mesh is

employed for regions inside and around a cavity to enable to model the spherical surface of the cavity with

a great accuracy. In the FE model, the base plate is restrained from the out-of-plane deflection along its

periphery. A typical mesh used in the FE analyses is given in Fig. 5. A typical deformation and stress
Table 2

Comparison of the maximum Kt between the present analyses and those from Duong and Yu (2002a)

Loading Grind-out depth (mm) Maximum Kt at bottom of grind-out cavity

Present analysis Plane-stress type analysis (Duong and Yu, 2002a)

137.9 MPa 2.54 1.418 1.140

137.9 MPa and )100 �C 2.54 1.793 1.442

137.9 MPa 4.06 1.954 1.692

137.9 MPa and )100 �C 4.06 2.511 2.146



Fig. 5. A mesh of a damaged plate used in the FE analysis.
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distribution across the wall thickness at the bottom of the cavity are illustrated in Figs. 6 and 7, respec-

tively. These figures are obtained from the results of the case of 80% grind-out and with the thermal effect.

Figs. 6 and 7 clearly indicate that the cavity wall near the bottom of the cavity deflects locally toward the

patch, as mentioned in the preceding paragraph. From Table 1, the analytical predictions are in good

agreement with the 3-D FE results. However, the minimum stress concentrations there (not reported here),

particularly at outer wall of the cavity, are significantly higher than those obtained from the finite element

method. Nevertheless, since only the maximum stress concentration at the bottom of the cavity is important
Fig. 6. Local deflection of a skin with an embedded cavity after one-sided patching. For clarity, the patch is not shown in the picture.



Fig. 7. Stress distribution across the cavity wall thickness with a maximum value at the inner wall (the side adjacent to the adhesive).
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from the practical design viewpoint, no further improvement on the analytical model for these analyses is

planned.
5. Conclusions

An analytical method to estimate the maximum stress concentration at the bottom of a grind-out cavity
after one-sided patching is presented. The method is based on three steps analysis procedure. A good

agreement is observed between the analytical predictions and the FE results for the maximum stress

concentration at the bottom of the grind-out cavity. Unless the structure is well supported against the out-

of-plane deflection, for example by stiffeners attached to one side of the structure, the out-of-plane bending

due to the load path eccentricity causes stresses in the repaired skin near the bottom of the grind-out cavity

vary significantly through a remaining skin�s thickness with inner wall fiber stresses higher than the cor-

responding plane-stress type results. The prediction based on the plane-stress type analysis (i.e., one without

considering the out-of-plane deflection) therefore may not be conservative in estimating the stress con-
centration at the bottom of the cavity after one-sided patching. The present paper extends the analytical

capabilities for analysis/design of bonded repairs to the analysis of out-of-plane bending of a corrosion

cavity reinforced with a composite patch.
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